Centrally Extended Conformal Galilei Algebras and Invariant Nonlinear PDEs

نویسندگان

  • Naruhiko Aizawa
  • Tadanori Kato
چکیده

We construct, for any given ` = 1 2 + N0, second-order nonlinear partial differential equations (PDEs) which are invariant under the transformations generated by the centrally extended conformal Galilei algebras. This is done for a particular realization of the algebras obtained by coset construction and we employ the standard Lie point symmetry technique for the construction of PDEs. It is observed that the invariant PDEs have significant difference for ` > 3 2 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

`-oscillators from second-order invariant PDEs of the centrally extended conformal Galilei algebras

We construct, for any given ` = 12 + N0, the second-order, linear PDEs which are invariant under the centrally extended Conformal Galilei Algebra. At the given `, two invariant equations in one time and ` + 12 space coordinates are obtained. The first equation possesses a continuum spectrum and generalizes the free Schrödinger equation (recovered for ` = 12) in 1 + 1 dimension. The second equat...

متن کامل

Comments on Galilean conformal field theories and their geometric realization

We discuss non-relativistic conformal algebras generalizing the Schrödinger algebra. One instance of these algebras is a conformal, acceleration-extended, Galilei algebra, which arises also as a contraction of the relativistic conformal algebra. In two dimensions, this admits an “exotic” central extension, whereby boosts do not commute. We study general properties of non-relativistic conformal ...

متن کامل

Conformal Galilean-type algebras, massless particles and gravitation

After defining conformal Galilean-type algebras for arbitrary dynamical exponent z we consider the particular cases of the conformal Galilei algebra (CGA) and the Schrödinger Lie algebra (sch). Galilei massless particles moving with arbitrary, finite velocity are introduced i) in d = 2 as a realization of the centrally extended CGA in 6 dimensional phase space, ii) in arbitrary spatial dimensio...

متن کامل

`-conformal Galilei algebras

Inequivalent N = 2 supersymmetrizations of the `-conformal Galilei algebra in d-spatial dimensions are constructed from the chiral (2, 2) and the real (1, 2, 1) basic supermultiplets of the N = 2 supersymmetry. For non-negative integer and half-integer ` both superalgebras admit a consistent truncation with a (different) finite number of generators. The real N = 2 case coincides with the supera...

متن کامل

Nonlinear Evolution Equations Invariant Under Schrödinger Group in three-dimensional Space-time

A classification of all possible realizations of the Galilei, Galilei-similitude and Schrödinger Lie algebras in three dimensional space-time in terms of vector fields under the action of the group of local diffeomorphisms of the space R3 × C is presented. Using this result a variety of general second order evolution equations invariant under the corresponding groups are constructed and their p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Symmetry

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015